Adsorption of "soft" spherical particles onto sinusoidally-corrugated substrates.

نویسندگان

  • Phillip K Schoch
  • Jan Genzer
چکیده

We utilize a Monte Carlo simulation scheme based on the bond fluctuation model to simulate settlement of "soft" adhesive particles onto sinusoidally-corrugated substrates. Particles are composed of a hard inner core with a "soft" adhesive shell made of surface-grafted polymer chains. These chains adhere to surface lattice sites via pair wise non-specific interactions acting between the substrate and the last two segments of the polymer grafts on the particle. This simulation scheme is aimed at comprehending single particle adsorption behavior to find the highest adhesion energy locations for given test surfaces and elucidate test surfaces that reduce adhesion energy. Parameters in this study are set by the particle, the substrate and an interaction parameter between the two. Particle parameters include core diameter (D), grafting density of polymer (σ) and length of grafted polymer (N). Substrate parameters include wavelength (λ) and amplitude (A). Our results show that the wavelength of substrate features plays a significant role in the settlement of single particle systems. At λ = D/2 we observe a minimum in the adhesion energy and at λ = D we observe a uniform settlement location of the particles. Increasing N leads to a reduction in the effectiveness of substrate topography to direct the settlement of individual particles into specific sites on the substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of multiple spherical particles onto sinusoidally corrugated substrates.

We utilize a Monte Carlo simulation scheme based on the bond fluctuation model to simulate settlement of adhesive particles onto sinusoidally corrugated substrates. The particles are composed of a hard inner core with either an effective potential shell or a "soft" adhesive shell made of flexible arms attached to the particle surface. These chains adhere via either the effective potential shell...

متن کامل

Water Adsorption on Aggregates of Spherical Aerosol Nano

Water Adsorption on Aggregates of Spherical Aerosol Nano Particles. (August 2005) Chu Nie, B.S., Nanjing University Chair of Advisory Committee: Dr. William H. Marlow A three dimensional integral equation is developed in order to compute water adsorption onto aggregates of spherical aerosol nano particles. The integral equation is derived from molecular density functional theory, with a weighte...

متن کامل

Salt-regulated attraction and repulsion of spherical polyelectrolyte brushes towards polyelectrolyte multilayers.

Adsorption of colloidal particles presents an interesting alternative to the modification of surfaces using covalent coupling or physisorption of molecules. However, to tailor the properties of these materials full control over the effective particle-substrate interactions is required. We present a systematic investigation of the adsorption of spherical polyelectrolyte brushes (SPB) onto polyel...

متن کامل

Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates.

We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Tw...

متن کامل

Adsorption of Basic Blue 41 from Aqueous Solution onto Coconut Fiber Particles

In this research, adsorption experiments were carried out for removal of Basic Blue 41(BB41) dye from an aqueous solution, using coconut fiber particles (CFP) as a low-cost biosorbent. The characteristics of coconut fiber particles weredeterminedwith a scanning electron microscope (FE-SEM) and Fourier Transform Infrared (FTIR) techniques. The effects of initial pH, biosorbentdose, contact time,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 38  شماره 

صفحات  -

تاریخ انتشار 2014